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Abstract

Mid-life obesity and type 2 diabetes mellitus (T2DM) confer a modest, increased risk for Alzheimer’s disease (AD),
though the underlying mechanisms are unknown. We have created a novel mouse model that recapitulates
features of T2DM and AD by crossing morbidly obese and diabetic db/db mice with APPΔNL/ΔNL x PS1P264L/P264L

knock-in mice. These mice (db/AD) retain many features of the parental lines (e.g. extreme obesity, diabetes,
and parenchymal deposition of β-amyloid (Aβ)). The combination of the two diseases led to additional
pathologies-perhaps most striking of which was the presence of severe cerebrovascular pathology, including
aneurysms and small strokes. Cortical Aβ deposition was not significantly increased in the diabetic mice, though
overall expression of presenilin was elevated. Surprisingly, Aβ was not deposited in the vasculature or removed to
the plasma, and there was no stimulation of activity or expression of major Aβ-clearing enzymes (neprilysin, insulin
degrading enzyme, or endothelin-converting enzyme). The db/AD mice displayed marked cognitive impairment in
the Morris Water Maze, compared to either db/db or APPΔNL x PS1P264L mice. We conclude that the diabetes and/or
obesity in these mice leads to a destabilization of the vasculature, leading to strokes and that this, in turn, leads to
a profound cognitive impairment and that this is unlikely to be directly dependent on Aβ deposition. This model of
mixed or vascular dementia provides an exciting new avenue of research into the mechanisms underlying the
obesity-related risk for age-related dementia, and will provide a useful tool for the future development of therapeutics.
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Introduction
Alzheimer’s disease (AD) is a neurodegenerative disease
affecting the elderly. There are two major neuropathol-
ogies associated with AD: extracellular plaques containing
β-amyloid (Aβ) and intracellular neurofibrillary tangles
composed of the microtubule-associated protein tau. The
combined insults of Aβ and tau accumulation are thought
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to promote the progressive synaptic failure and neuronal
loss, leading to memory loss and cognitive impairment
[1-4]. While familial forms of AD exist, sporadic AD is far
more common. Though the two forms of AD ultimately
reflect similar pathologies, the underlying causes vary.
Familial AD is linked to specific mutations in amyloid
precursor protein (APP) or presenilin (PS1 or PS2), lead-
ing to accumulation of toxic β-amyloid species in the
brain by mid-life. Sporadic AD manifests later in life, and
the triggers are less clear and likely complex. Though
there are genetic components associated with sporadic
AD, environmental factors, such as lifestyle (e.g. diet and
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exercise), are also likely to impact disease onset and
progression.
Obesity is a major worldwide public health problem,

and is associated with the metabolic disorder type 2 dia-
betes mellitus (T2DM). Diabetes is associated with cog-
nitive decline in both rodents and humans [5-7]. Due to
improved treatments, T2DM patients are living longer,
putting them at increased risk for age-related complica-
tions. Although simply living to an older age increases
the risk of Alzheimer’s disease, there is a well-known
(albeit poorly understood) link between obesity, T2DM
and dementia [8]. The form of dementia afflicting these
individuals combines elements of vascular pathology,
small strokes and AD-related neuropathology. In fact,
the amount of AD pathology is essentially unchanged in
cases with a history of T2DM, while cerebrovascular
pathology increases [9,10]. Vascular dementia, or even
cerebrovascular dysfunction as a general AD comorbid-
ity, is a poorly understood condition with no viable
treatment options. This is due to cerebrovascular dys-
function being understudied as a major cause of demen-
tia and the lack of useful model systems in which to
develop therapies or to study the disease process.
In this paper, we describe the creation of a novel

mouse model combining the key features of obesity, dia-
betes, and AD. We crossed the obese and diabetic db/db
mouse [11-13] with the APPΔNL/ΔNL × PS1P264L/P264L

knock-in model of AD [14,15]. The resulting mice
(which we have called db/AD) are morbidly obese, glu-
cose intolerant, insulin resistant, and display parenchy-
mal amyloid plaques, similar to the parental lines. In
addition, although these mice had profound cognitive
impairment and marked cerebrovascular abnormalities,
this does not appear to be driven by Aβ deposition. The
db/AD mice will be a useful tool with which to study
the intersection of T2DM and dementia.

Materials and methods
Mouse breeding
In order to create a diabetic AD mouse model, we crossed
the obese, diabetic Leprdb/db (db/db) mice [11-13] with the
APPΔNL/ΔNL/PS1P264L/P264L (APP/PS1) knock-in model of
AD [14,15]. Because the homozygous db/db mice are in-
fertile, heterozygous (Leprdb/+) mice on a C57Bl/6 J back-
ground (Jackson Labs; Bar Harbor, ME) were bred with
APP/PS1 mice on a CD-1/129 background (obtained from
the breeding colony at the University of Kentucky). The
resulting F1 mice heterozygous for all three alleles were
then intercrossed to generate wild-type, heterozygous,
and homozygous db mice that were either wild-type or
homozygous for the AD knock-in genes. For most of the
data presented here, we focused on four main genotypes:
wild-type (WT; Lepr+/+ × APP+/+/PS1+/+), db (Leprdb/db ×
APP+/+/PS1+/+), AD (Lepr+/+ × APPΔNL/ΔNL/PS1P264L/
P264L), and db/AD (Leprdb/db x APPΔNL/ΔNL/PS1P264L/
P264L). Some analyses included Leprdb/+ APP+/+/PS1+/+

and Leprdb/+ × APPΔNL/ΔNL/PS1P264L/P264L mice (noted
where appropriate). Mice were housed under a 12 hour
light–dark cycle and fed standard rodent chow ad libitum.
Mice were euthanized by CO2 asphyxiation, followed by
decapitation. All animal work was conducted with prior
University of Kentucky (UK) IACUC approval, and was
performed in accordance with USDA and PHS guidelines.

Genotyping
Tail snips were collected prior to weaning. For some of
the db and APP genotyping, tail snips were sent to
Transnetyx (Cordova, TN) for purification and analysis.
For those analyzed in our lab, as well as PS1 genotyping,
genomic DNA was isolated and purified from tail snips
using the Promega Wizard Genomic DNA kit (Promega;
Madison, WI). db genotyping was performed using a sin-
gle nucleotide polymorphism Taqman® genotyping kit
(Applied Biosystems Life Technologies; Grand Island,
NY). APP and PS1 genotyping were performed by PCR
as described previously [16] using GoTaq® Flexi DNA
Polymerase (Promega).

Mouse groups
The mice used for this study were broadly divided by
age and will be referred to as young (1–4 months old:
3.0 ± 0.8 months), middle-aged (5–9 months old: 7.2 ±
1.6 months), and older (10–14 months old: 12.2 ±
1.0 months) based on the predicted lifespan of the
db/AD mice (~15-16 months).

Glucose and insulin tolerance tests
Mice were fasted 3–6 hours prior to the start of the glu-
cose tolerance test (GTT) or insulin tolerance test (ITT).
All glucose measurements were obtained via tail bleed
using a Bayer Breeze 2 glucometer and test strips (Bayer;
Tarrytown, NY). For the GTT, a baseline measurement
was obtained after which the GTT was initiated by intra-
peritoneal injection of dextrose (2 mg/g: Hospira; Lake
Forrest, IL). Subsequent measurements were recorded
at 15, 30, 60, and 120 minutes post-injection. For the
ITT, a baseline glucose measurement was taken, after
which insulin (0.75 U//kg: Eli Lilly; Indianapolis, IN)
was injected intraperitoneally. Subsequent measure-
ments were recorded at 15, 30, 60, and 120 minutes
post-injection. Any glucometer reading of “HI” was set
to 700 mg/dL for data analysis.

Blood pressure measurements
Blood pressure (BP) was measured using a Kent CODA
8 BP machine (Kent Scientific; Torrington, CT). Animals
were allowed to acclimate to the tail blood pressure cuff
for five minutes on a warming platform before recording
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BP measures. The BP measures consisted of 20 cycles of
diastolic/systolic measures, with a 20 second rest period
between cycles. After finishing the data collection, the
mice were immediately released back into their home
cages. The rodent restraints, cuffs, and warming plat-
form were cleaned between animals; female animals
were always run after male animals to avoid any possible
irritation of the males. BP measures were performed at
the same time each day to account for the possible influ-
ence of circadian rhythms.

Plasma measurements
Blood was collected upon decapitation in the presence of
EDTA, centrifuged (1500 × g, 10 min.), and the plasma
collected. Plasma leptin was measured by a commercially-
available, species-specific ELISA (EMD Millipore; Billerica,
MA), according to package instructions.

Immunoassays
Frozen brain tissue was serially extracted in either PBS or
HEPES (20 mM HEPES, 2 mM EDTA, 2 mM EGTA,
0.32 M sucrose) followed by 2% SDS, and 70% formic acid
as previously described [17,18]. Buffers were supple-
mented with protease inhibitor cocktail (Amresco; Solon,
OH) and phosphatase inhibitor cocktail (EMD Millipore).
The tissue was homogenized using an AHS200 Power-
Max (VWR; Radnor, PA) homogenizer, the insoluble
material was removed by centrifugation (PBS/HEPES/
SDS: 20,800 × g, 30 minutes; formic acid; 20,800 × g,
60 min) and the supernatants frozen until use. Human-
specific Aβ was measured by two-site sandwich ELISA
as previously described [17]. Oligomeric Aβ (mouse and
human) was measured by single-site sandwich ELISA as
previously described [19,20]. Briefly, 384-well plates
(Immulon 4HBX: Thermo Scientific; Waltham, MA)
were coated with either 0.5 μg Ab42.5 (Aβtotal and Aβ1–40),
Ab2.1.3 (Aβ1–42), or 4G8 (oligomers: Covance, Princeton,
NJ)/well and blocked with Synblock (Serotec; Raleigh,
NC) for two hours. PBS and SDS extracts were diluted
in AC buffer (0.2 M sodium phosphate (pH7), 0.4 M
NaCl, 2 mM EDTA, 0.4% Block Ace (Serotec), 0.4%
BSA, 0.05% CHAPS, 0.05% NaN3) for analysis. Formic
acid extracts were first neutralized with TP buffer (1 M
Tris base, 0.5 M sodium phosphate: 20-fold dilution),
then further diluted with AC buffer for analysis. Simi-
larly, plasma was diluted in AC buffer for analysis. A
standard curve was prepared from recombinant human
Aβ1–42, Aβ1–40, or oligomeric Aβ diluted in AC buffer.
Standards and samples were measured at least in dupli-
cate. After incubation with the samples and standards,
Aβ was detected with either biotinylated-4G8 (Aβtotal,
Aβ1–42, and oligomers: Covance) or biotinylated-13.1.1
(Aβ1–40), followed by incubation with 0.1 μg/mL
NeutrAvidin-HRP (Pierce Technologies; Rockford, IL).
The plate was developed with 3′,3′,5′,5′-tetramethylben-
zidine (Kirkeguard and Perry Laboratories; Gaithersburg,
MD) and the reaction stopped with 6% o-phosphoric acid.
The absorbance at 450 nm was measured with a BioTek
(Winooski, VT) multiwell plate reader.
Protein levels of PS1, BACE1, BACE2, phosphorylated

and total tau, endothelin-converting enzyme 1 (ECE1),
and PSD95 were determined by Western or spot blot,
using protein-specific antibodies (PS1 (EMD Millipore),
BACE1 (Epitomics; Burlingame, CA), BACE2 (Abcam;
Cambridge, MA), pTau (AT8: Sigma-Aldrich; St. Louis,
MO), total tau (HT7: Pierce: [21,22]), ECE1 (Acris Anti-
bodies; San Diego, CA), PSD95 (D27E11; Cell Signaling;
Danvers, MA)). Immunoreactive bands for PS1, BACE1,
BACE2, tau, and ECE1 were visualized with Super Signal
West Dura chemiluminescence HRP substrate (Pierce)
after incubation with HRP-conjugated secondary anti-
bodies and exposed to film. Densitometric analyses were
performed using Image J software. Expression was stan-
dardized to β-actin (Sigma-Aldrich) or GAPDH (Abcam)
expression in the same lane or spot, respectively. PSD95
and its GAPDH loading control (Abcam) were visualized
with fluorescently-labeled secondary antibodies (LI-COR;
Lincoln, NE) using an Odyssey Infrared Imager (LI-COR)
for quantitation and analysis.

qPCR
Tissue was homogenized in Trizol™ (Invitrogen; Grand
Island, NY) in order to isolate RNA, followed by phenol/
chloroform extraction. When needed, RNA was further
purified by RNeasy columns (Qiagen; Valencia, CA). Ex-
pression of ECE1 and ECE2 were determined by two-step
qRT-PCR, using iScript (BioRad; Hercules, CA) reverse
transcription, followed by qPCR with PerfeCTa FastMix™
(Quanta BioSciences; Gaithersburg, MD). The geometric
mean of the CT values for RPL30, cyclophilin, and RNA
polymerase IIJ was used as an internal control to calculate
and compare relative expression (2-ΔΔCT ). Gene specific
primer sets were obtained from IDT (Coralville, IA).

Neprilysin and insulin degrading enzyme activity
Neprilysin (NEP) activity was measured as described [23].
Briefly, hemibrains were homogenized in ice-cold Tris
buffer (50 mM Tris–HCl and 150 mM NaCl, pH 7.2;
100 mg/mL) supplemented with 1 mM PMSF (Sigma-
Aldrich), and 10 μM E-64 (RPI; Mt. Prospect, IL). The
homogenate was centrifuged (1000 × g, 20 min., 4°C),
followed by a high-speed centrifugation of the supernatant
(100,000 × g, 1 hour, 4°C). The supernatant was removed,
and the pellet resuspended in Tris buffer for the enzyme
assay. NEP activity was measured using glutaryl-Ala-
Ala-Phe-4-methoxy-2-naphthylamide (Sigma-Aldrich) as
a substrate. Reactions were initiated with the addition of
the membrane fraction, then fluorescent product formation
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was monitored (340 nm excitation, 425 nm emission,
37°C). Phosphoramidon (50 μM) and thiorphan (10 μM)
were used to inhibit NEP activity and determine back-
ground fluorescence for each sample.
Insulin degrading enzyme (IDE) activity was measured

using a commercially-available kit (EMD Millipore) ac-
cording to manufacturer’s instructions. Briefly, hemibrains
were homogenized in Tris buffer (100 mg/mL) supple-
mented with PMSF and E-64, centrifuged (20,800 × g,
30 min., 4°C), and the supernatant used for the activity
assay. Samples were compared against rat IDE. Fluores-
cence was measured at an excitation wavelength of
320 nm and an emission wavelength of 405 nm.

MRI
T2*-MRI was performed using a horizontal bore Bruker
Clinscan (7.0 T, 30 cm, 300 MHz: Billerica, MA) imager
equipped with a triple-axis gradient (630 mT/m and
6300 T/m/s) and a helium-cooled 14 K quadrature head
cryo-coil, cooled to 20°K. T2*-weighted images were ac-
quired with a 2D GRE sequence with at 34 μm× 34 μm×
400 μm resolution, 15 mm FOV, 25 degree flip angle, 10
averages, TR 165 ms, and TE 15.3 ms. Mice were imaged
under constant isofluorane anesthesia and their body
temperature and respiration were continuously moni-
tored. At least ten equally-spaced images were taken of
each mouse brain. Asymmetrically-occurring dark spots
on the images were considered indicative of vascular
events (confirmed histologically, see below), whereas
symmetrically-occurring dark areas were considered to
be blood vessels and were excluded.

Vascular corrosion casting
Vascular corrosion casting was performed as described
[24]. Briefly, mice were anesthetized using pentobarbital
(100 mg/kg), followed by transcardial perfusion with
heparinized saline (0.9%). Following a brief perfusion
with para-formaldehyde (4%), the brains were perfused
with the polyurethane resin Pu4ii (4 mL/min: VasQtec;
Switzerland). After allowing the resin to cure for at least
two days, the brains were incubated in KOH (7.5%, 50°C,
48 h), followed by formic acid (5%, 50°C, 24 h). The tis-
sue was subsequently frozen, then lyophilized to ma-
cerate the soft tissue. Finally, the casted brains were
sputter-coated in palladium and viewed by scanning
electron microscopy (Hitachi S-4300: Schaumburg, IL),
using the middle cerebral artery as a landmark. Endo-
thelial cell density was determined by endothelial cell
nuclear imprints measured directly using Image J soft-
ware. Aneurysm pathology was assessed on a 4 point
scale based on clear data break points (0 = none; 1 = 1
possible; 2 = 1–3 definite; 3 = 4+ definite. Vascular density
was determined by rank order of representative images
using three blinded, independent reviewers. Images were
scored from 1 (most dense) – 26 (least dense), and the
ranks from the three reviewers averaged.

Histology
Tissue was harvested and fixed in PBS-buffered 10% for-
malin for at least 24 hrs. For Aβ immunohistochemistry,
hemibrains were embedded in a matrix and sectioned
(30 μm) by NeuroScience Associates (Knoxville, TN).
For Prussian blue staining, hemibrains were embedded
in paraffin and sectioned to 8 μm using a microtome.
For free-floating sections, the hemibrains were incubated
in sucrose (10%, 20%, 30% sequentially for 24 hours
each) for cryoprotection, then sectioned on a sliding,
freezing microtome to 25 μm.
Perl’s Prussian blue staining of hemosiderin was per-

formed as described [25]. Immunohistochemistry detect-
ing Aβ was performed using antibody 4G8 (Covance) as
described [19]. Some Aβ immunohistochemistry was
performed by NeuroScience Associates. Densitometry
was performed on these sections using Image J software.
Vascular Aβ was visualized by three different methods:
1) Congo red (0.2% in NaCl-saturated 80% ethanol), 2)
Thioflavin S (1%: Sigma-Aldrich), and 3) resorufin
(Sigma-Aldrich: [26]). Cerebral blood vessels were im-
aged in free-floating sections using a mouse anti-α-actin
antibody (A5228: Sigma-Aldrich), followed by quantitation
with Image J software. Triple labeling of free-floating sec-
tions was performed with the fluorescent Aβ-specific
Amylo-Glo stain (Biosensis; Thebarton, Australia), rabbit
anti-collagen IV (ab6586: Abcam), and rabbit anti-glial
fibrillary acidic protein (G9269: Sigma-Aldrich).

Behavioral testing
Testing was performed by the UK Rodent Behavioral Core
(http://www.rodentbehaviorcore.uky.edu/default.aspx/0_UK_
Rodent_Behavior_Core). Mice were tested using the Morris
Water Maze paradigm. The maze consisted of a circular
pool (134.5 cm diameter) filled with 25°C water. A circular
platform (11 cm diameter) was placed in the northeast
quadrant 1 cm below the surface of the water so that it
was not visible. Nontoxic tempura paint was used to cre-
ate opaque water, thus obscuring the platform. The pool
was placed behind dark curtains holding external maze
cues. The cues were rotated each day. There were five
consecutive training/acquisition days. On each-training
day the animals swam four trials (rotating initial place-
ment each time), lasting one minute each, with a five mi-
nute interval between trials. After a 30 minute rest upon
the conclusion of training on the fifth day, we performed a
probe trial where the platform was removed from the
pool. The animal’s location in the pool was recorded for
one minute and used to calculate the time spent in the
target quadrant and the number of times crossing the
platform area. After the completion of training, mice were
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tested for visual acuity during which the external cues
were provided along with a visibly-raised platform. The
mice were tested for visual acuity in four trials during one
day. Water Maze data (e.g. swim speed, distance, latency
to platform. etc.) were collected and analyzed using Etho-
Vision XT software (Noldus Information Technology;
Leesburg, VA).

Passive immunization
A small number of db/AD mice (N = 7; 9–12 month old;
3 M/4 F) were injected intraperitoneally with Ab42.5
(300 μg in sterile saline) every two weeks for two
months. Mice were imaged by T2* MRI prior to starting
the treatment (baseline) and prior to death (endpoint).
The majority of the brains (N = 6; 2 M/4 F) were ex-
tracted in RIPA buffer (50 mM Tris–HCl, 150 mM
NaCl, 1% Triton X-100, 0.5% deoxycholate, 0.1% SDS;
pH = 8.0) with protease inhibitor cocktail (Amresco) for
Aβtotal ELISA measurement as described above. Brains
from untreated, age-matched db/AD mice (N = 6; 2 M /
4 F) were also extracted in RIPA and used as controls.
Endpoint MRI scans were compared against untreated,
age-matched (11–14 months old) db/AD mice.

Statistics
Weight data were analyzed by student’s t-test at each
age using Microsoft Excel, and the probability adjusted
using the Holm-Bonferroni method [27]. All other data
were analyzed with SPSS (Hewlett Packard; Palo Alto,
CA) using the general linear model (GLM) module for
ANOVA with the independent variables gender, db
genotype, and AD genotype (for an explanation of this
model, see http://pic.dhe.ibm.com/infocenter/spssstat/
v21r0m0/index.jsp?topic=%2Fcom.ibm.spss.statistics.help
%2Fidh_glm_multivariate.htm). Post-hoc multiple com-
parisons were conducted using Tukey’s test, Dunnett’s
test, or similar. Chi-square analyses were performed on
the visual acuity measurements for the Morris Water
Maze. We performed correlation analyses using either
Pearson’s r or Spearman’s ρ (parametric and nonparamet-
ric values, respectively), and adjusted probability using
the Holm-Bonferroni method. For nonparametric com-
parisons, we used a Kruskal-Wallis ANOVA, or Mann–
Whitney U test, where appropriate. For most presented
statistics, we note an overall effect of genotype (db or
AD) across the data set. In some cases, we also present
a direct comparison between two different genotypes.

Results
Creation and characterization of the db/AD mouse model
In order to explore the mechanisms underlying the in-
creased risk for AD in T2DM patients, we created a
unique mouse model that recapitulates features of both
diseases. The obese, leptin-resistant, and diabetic db/db
(Leprdb/db) mouse was crossed with the APPΔNL/ΔNL x
PS1P264L/P264L knock-in model of AD. Since APP and
PS1 are under the control of their endogenous pro-
moters, expression follows normal murine levels and
patterns. The resulting mice homozygous for the Leprdb

mutation were morbidly obese (Figure 1a). In addition,
young Leprdb/db mice displayed elevated fasting glucose
and impaired glucose tolerance (Figure 1b: F[2, 30] =
38.2, p < 0.0001). On average, Leprdb/db mice were 2-fold
heavier than Lepr+/+ and Leprdb/+ mice (Figure 1c-d: p ≤
0.001 for all ages). The AD genotype had no effect on
weight (p ≥ 0.3 for all ages). Consistent with their in-
creased weight, older Leprdb/db mice had significantly
more plasma leptin (168 ± 15 ng/mL; n = 9 F/17 M) than
Lepr+/+ (54 ± 15 ng/mL; n = 6 F/20 M) or Leprdb/+ (49 ±
15; n = 11 F/15 M; p ≤ 0.0001: not shown) animals. The
AD genotype had no effect on circulating leptin (APP+/+ ×
PS1+/+ 81 ± 12 ng/mL, n = 12 F/26 M vs. APPΔNL/ΔNL ×
PS1P264L/P264L 99 ± 12 ng/mL, n = 15 F/23 M; p = 0.3). The
Leprdb/db × APPΔNL/ΔNL/PS1p264L/P264L mice exhibited
decreased survival compared with all other genotypes,
particularly in the males, which had a ~50% attrition
rate by 10 months (Figure 1e-f ). Since there is little ap-
parent difference in the tested metabolic parameters
between Lepr+/+ and Leprdb/+ mice, we chose to focus
on the Lepr+/+ and Leprdb/db genotypes for subsequent
experiments. For simplicity, we will refer to the four
main genotypes as WT (Lepr+/+ × APP+/+/PS1+/+), db
(Leprdb/db × APP+/+/PS1+/+), AD (Lepr+/+ × APPΔNL/ΔNL/
PS1P264L/P264L), and db/AD (.Leprdb/db x APPΔNL/ΔNL/
PS1P264L/P264L). Middle-aged db and db/AD mice also had
impaired insulin sensitivity (Figure 1g: F[15,177] = 4.64,
p ≤ 0.0001). Collectively, these data indicated that the db
homozygous mice had metabolic dysfunction. Blood pres-
sure was not different in middle-aged diabetic mice com-
pared with nondiabetics, although there was a modest
tendency (Figure 1h: p ≤ 0.1) for it to be slightly lower
overall.

β-amyloid
We have shown previously that leptin downregulates ex-
pression of the γ-secretase components, particularly pre-
senilin [28]. We reasoned that leptin resistance, as seen
in obesity and diabetes, would likely increase PS1 ex-
pression in the brain and, as a consequence, β-amyloid
deposition in the db/AD mice. In order to visualize the
AD pathology, brains from middle-aged mice were sec-
tioned and stained for Aβ (Ab4G8 – specific for Aβ17–24).
As expected, only mice containing the AD-related muta-
tions in APP and PS1 were positive for Aβ-containing pla-
ques (Figure 2a-d). Quantitation of plaque burden
indicated that the number of plaques present in db/AD
mice decreased relative to AD mice (0.104 ± 0.012 vs.
0.168 ± 0.013 A.U.; p < 0.001; n = 9AD, 10 db/AD; not

http://pic.dhe.ibm.com/infocenter/spssstat/v21r0m0/index.jsp?topic=%2Fcom.ibm.spss.statistics.help%2Fidh_glm_multivariate.htm
http://pic.dhe.ibm.com/infocenter/spssstat/v21r0m0/index.jsp?topic=%2Fcom.ibm.spss.statistics.help%2Fidh_glm_multivariate.htm
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Figure 1 (See legend on next page.)

Niedowicz et al. Acta Neuropathologica Communications 2014, 2:64 Page 6 of 17
http://www.actaneurocomms.org/content/2/1/64



(See figure on previous page.)
Figure 1 db/AD characteristics. The diabetic Leprdb/db mouse was crossed to the APP/PS1 knock-in model of AD to create the db/AD line.
(a) Mice homozygous for the db gene were obese (female, 9 months old; left: Leprdb/db mouse; right: Leprdb/+ mouse). (b) Leprdb/db mice showed
an impaired response to glucose (F[2,30] = 38.2, p≤ 0.0001 for the db genotype overall, n = 13 Lepr+/+, n = 5 Leprdb/+, n = 18 Leprdb/db; ** = p≤
0.01, * = p≤ 0.05, Tukey’s LSD). The AD genotype did not affect the GTT (not shown). (c - d) Leprdb/db mice showed substantial weight gain from
an early age. Weight was relatively stable after ~7 months, and there was no effect of the AD genotype (* = p≤ 0.01, t-test; Holm-Bonferroni [27]
correction; n = ~14 mice / genotype). Female (e) and male (f) Leprdb/db x APPΔNL/ΔNL/PS1p264L/P264L mice had reduced survivability compared with
other genotypes, though the males had a particularly high attrition rate. (N = 367 F/359 M: Leprdb/db x APPΔNL/ΔNL/PS1p264L/P264L, n = 56 F/53 M;
Leprdb/db x APP+/+/ PS1+/+, n = 73 F/60 M; Lepr+/+ x APPΔNL/ΔNL/PS1p264L/P264L, n = 54 F/44 M; Lepr+/+ x APP+/+/ PS1+/+, n = 56 F/61 M; Leprdb/+ ×
APPΔNL/ΔNL/PS1P264L/P264L, n = 69 F/61 M; Leprdb/+ × APP+/+/ PS1+/+, n = 59 F/80 M) In subsequent experiments, we focused on the four main genotypes.
For simplicity we have named them WT, db, AD, and db/AD. (g) Leprdb/db (db and db/AD) mice were insulin resistant (F[15,177] = 4.64, p≤ 0.0001 for the
db genotype overall; WT, n = 14; db, n = 13; AD, n = 20; db/AD, n = 18; ~6 months of age; * = p≤ 0.05, ** = p≤ 0.01; Dunnett’s test, relative to Lepr+/+

(WT and AD)). (h) Blood pressure was not different, although there was a modest tendency (F[2,15] = 3.24, p≤ 0.1) for it to be slightly lower overall in
Leprdb/db mice regardless of the AD genotype, at least at this age (n = 5–7 mice / genotype, ~7-8 months of age).
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shown). Contrary to the effect on plaques, the db mutation
increased expression of PS1 protein (Figure 2e; p < 0.002)
Expression of BACE1 (Lepr+/+0.89 ± 0.06; Leprdb/+0.87 ±
0.03; Leprdb/db 0.80 ± 0.05 A.U.) and BACE2 (Lepr+/+0.83
± 0.05; Leprdb/+0.85 ± 0.03; Leprdb/db 0.84 ± 0.04 A.U.), the
β-secretase proteins, was unaffected by the db genotype
(n = 8 F/7 M Lepr+/+; 13 F/11 M Leprdb/db; 22 F/28 M
Leprdb/+: p ≥ 0.41 for both proteins: not shown). The db
mutation significantly increased tau phosphorylation
(Figure 2f: p < 0.003), although no neurofibrillary tangle
pathology was observed (not shown). On the other hand,
Aβ oligomers were significantly elevated in diabetic
mice (Figure 2g: p < 0.0005). Young (3 months) AD and
db/AD mice had approximately equal amounts of total
Aβ (Figure 2h: p < 0.3). At 6 and 12 months, there was
still no overall effect of the db genotype on Aβ levels
(Figure 2i-j: p < 0.23 for Aβtotal: p < 0.07 for Aβ1–40)
though there was a modest, but significant, reduction in
Aβ1–42 (Figure 2k: p < 0.01).
Cerebral amyloid angiopathy (CAA), in which Aβ is

deposited in the vasculature, is a co-morbidity in many
AD patients [29]. We therefore hypothesized that excess
Aβ was created, but was deposited in blood vessels ra-
ther than the brain parenchyma in the db/AD mice. To
investigate this possibility, we pursued a variety of histo-
pathological staining techniques. There was no appre-
ciable Congo Red, Thioflavin S, or resorufin staining in
any of the aged db/AD mice tested, nor did we detect
any Aβ immunoreactivity in large or small blood vessels
(not shown). Additionally, there was no co-labeling of
amyloid (by Amylo-Glo) and anti-collagen IV-labeled
vessels (Figure 3a). These data demonstrate a lack of
vascular deposition and indicate that CAA is not a pri-
mary pathology in these mice. Additionally, we hypothe-
sized that excess Aβ could have been produced, but
cleared from the brain at an increased rate in the db/AD
mice. We therefore measured plasma Aβ levels. Neither
Aβ1–40 (Figure 3b: p < 0.18) nor Aβ1–42 (Figure 3c: p ≤
0.06) were significantly increased in the plasma of older
db/AD mice, compared to AD mice. We also reasoned
that increased activity of clearance enzymes could also ac-
count for a loss of Aβ. However, neither NEP (Figure 3d)
nor IDE (Figure 3e) activities were increased by the db
genotype. In fact, the diabetic mice displayed significantly
reduced activities of these major clearance enzymes (NEP;
IDE; p ≤ 0.01 for both), compared to non-diabetic mice.
Expression of endothelin-converting enzyme (ECE1)
protein was unaffected by the db genotype (Figure 3f:
p < 0.65). Similarly, mRNA expression of ECE1 (Figure 3g)
and ECE2 (not shown) was unaffected by genotype (n =
1 F/4 M WT; 2 F/4 M db; 1 F/3 M AD; 1 F/3 M db/AD:
p ≥ 0.13 for both genes).

Cognitive deficit
Since the diabetes phenotype did not significantly impact
amyloid accumulation, we next determined if there was
an effect on cognition in these mice. We tested older
mice using a standard Morris Water Maze paradigm.
While there was no difference in swim distance on the
first day of training (Figure 4a: p < 0.38), the db/AD mice
had significantly longer swim paths on each of the sub-
sequent days (p ≤ 0.04 on each of days 2–5), indicating a
learning and/or memory impairment. Neither db nor
AD mice showed any significant impairment at this age
(p ≥ 0.13 for each genotype). Swim speeds were not sig-
nificantly different on the first training day (WT 374 ±
18; AD 356 ± 21; db 368 ± 18; db/AD 352 ± 18 mm/s:
p ≥ 0.4 for all comparisons: not shown) demonstrating
that db/AD mice are capable of swimming as well as
other genotypes. After the fifth day of acquisition trials,
we performed a probe trial during which the platform
was removed. In this trial, db/AD mice spent signifi-
cantly less time in the target quadrant (Figure 4b: p <
0.04) and less time in proximity to the platform location
(p < 0.01). Since diabetics are prone to retinopathy and
blindness, we wanted to exclude a profound visual im-
pairment that would affect performance on the Morris
Water Maze. We, therefore, performed a visual acuity
test in which the platform location was visible and cued.
All animals, with the exception of one db/AD mouse,



Figure 2 Amyloid pathology in db/AD mice. (a - d) Aβ deposition (4G8 IHC) in mouse neocortex (~8 months old: magnification: 4×). db/AD (a)
and AD (c) mice displayed amyloid-containing plaques, while db (b) and WT (d) mice did not. The db genotype significantly upregulated both
PS1 expression (p < 0.002 for db overall: e) and tau phosphorylation (p < 0.003 standardized to total tau: f) in the brain (middle-aged: n = 10 F/
12 M db wild-type; 13 F/11 M db homozygotes; 22 F/28 M heterozygotes). The results are similar for phosphor-tau when it is not standardized to
total tau (not shown) (g) Aβ oligomers were significantly increased in diabetic (db and db/AD) mice (p < 0.001 for db overall, WT, n = 8; db, n = 8;
AD, n = 8; db/AD, n = 7) compared to non-diabetic mice. Additionally, oligomers were significantly higher in db/AD compared to AD mice (# = p <
0.0005). (h) Young (3 month old) db/AD mice did not have significantly more Aβ than AD mice (n = 5 F/1 M WT; 5 F/1 M db; 3 F/3 M AD; 3 F/3 M
db/AD: p < 0.29). (i) Total Aβ (Ab42.5/4G8), (j) Aβ1–40 (Ab42.5 / 13.1.1), and (k) Aβ1–42 (Ab2.1.3 / 4G8) all increased with age (p ≤ 0.0001); the db
genotype had no overall effect, although there was a modest reduction in Aβ1–42 (p≤ 0.01). * = p≤ 0.05, relative to db WT. N = 77 [genotype, age
(6–7 mo./12 mo.): WT, n = 13/8; db, n = 13/8; AD, n = 9 / 8; db/AD, n = 11/7)].
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were able to locate the cued platform (χ2 = 3.22: p < 0.36).
We also analyzed the visual acuity data using an ANOVA:
the db genotype had no effect on either swim distance
(WT 2610 ± 2059; AD 3576 ± 2511; db 5805 ± 1757; db/
AD 9700 ± 3173 mm: p < 0.07: not shown) or latency to
platform (WT 10.6 ± 3.4; AD 11.7 ± 3.6; db 13.45 ± 2.4; db/
AD 21.6 ± 4.5 seconds: p < 0.12: not shown), indicating that
visual impairment could not account for the deficit. These
data indicate that intersection of the both diabetes and
AD is necessary for cognitive impairment.



Figure 3 Aβ is not deposited in the vasculature. Large numbers of activated astrocytes could be seen both around amyloid cores and around
some larger blood vessels (arrowheads) in older db/AD mice (a) There was no significant co-staining of amyloid and collagen IV, indicating that
Aβ was not deposited in blood vessels. Red: GFAP, Green: Collagen IV, Blue: Amylo-Glo. db/AD mice did not have significantly more Aβ40 (b) or
Aβ42 (c) in plasma, compared with AD mice (n = 18 F WT; 18 F db; 14 F AD; 13 F db/AD: 7–12 months old: p > 0.06), though mice containing the
AD mutations had significantly more than those without (p ≤ 0.0001 for AD overall). Though the activities were significantly different in mice
homozygous for the db mutation, neprilysin (d; p < 0.02) and insulin degrading enzyme (IDE: e; p < 0.003) activities were not increased relative to
db WT mice (1–4 months old: n = 5 F/7 M Lepr+/+; 8 F/4 M Leprdb/db; 6 F/6 M Leprdb/+). Endothelin converting enzyme (ECE1: f) protein expression
was unaffected by the db (p < 0.65) and AD (p > 0.1) genotypes (7–12 months old: n = 14 F/7 M WT; 16 F/5 M db; 12 F/5 M AD; 12 F/6 M db/AD).
Similarly ECE1 (g) and ECE2 (not shown) mRNA expression was unchanged in diabetic mice (p > 0.38 for the db genotype overall), though ECE1
expression was reduced in AD mice relative to WT (* = p < 0.03: n = 1 F/4 M WT; 2 F/4 M db; 1 F/3 M AD; 1 F/3 M db/AD).
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Synapse loss
Because synaptic dysfunction and subsequent loss have
been implicated in AD- associated memory impairment
[2-4], we next measured the amount of the synaptic
marker PSD95 in older mice. Neither diabetes nor the
Figure 4 db/AD mice display impaired cognition. db/AD mice showed a
p-value by day: 0.4, 02, 0.05, 0.001, 0.03) using a standard paradigm of 4 tri
AD, n = 4 F/2 M; db, n = 6 F/5 M; db/AD, n = 7 F/1 M). (b) db/AD mice did n
trial (ANOVA, p < 0.03). The db/AD mice spent less time in the target quadr
** = p ≤ 0.01. Tukey’s test, relative to WT). All groups performed similarly on
(p < 0.12), indicating that the db and db/AD mice did not have a profound
AD genotype significantly affected the level of PSD95 in
the brain (p > 0.1: Figure 5), indicating that the number
of synapses is not substantially reduced in the db/AD
mice at the age at which we have observed learning and/
or memory deficiencies.
significant acquisition deficit in the Morris Water Maze (a): ANOVA
als/day (mean swim distance is shown for each block: (WT, n = 4 F/4 M;
ot learn the location of the hidden platform, as shown by probe
ant, and less time in proximity to the platform location (* = p≤ 0.05,
the cued version of the task (both distance (p < 0.07) and latency
visual impairment (not shown).



Figure 5 Synapse Loss in db/AD mice. (a) A representative immunoblot of PSD95 expression in brains from older db/AD mice. The
immunoblot was visualized with an Odyssey Infrared Imager (LI-COR). Red = PSD95, Green = GAPDH. (b) Analysis of PSD95 expression in the four
main genotypes. PSD95 expression was standardized to that of GAPDH in the same lane. PSD95 expression was unaffected by either the db
(p > 0.3) or the AD (p > 0.09) genotype.
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Cerebrovascular abnormalities
Since the learning and memory deficit in db/AD mice
was not obviously attributable to accumulation of Aβ or
synapse loss, we next focused on changes in the cerebro-
vasculature. We examined the brain vasculature in older
mice using vascular corrosion casting followed by scan-
ning electron microscopy. WT and db mice had normal
appearing vasculature (Figure 6a). By contrast, AD and
db/AD mice displayed a marked pattern of cerebrovas-
cular pathologies. We observed evidence of widespread
saccular aneurysms, often occurring at the vessel branch
points (Figure 6b). Some of the mice tested also pre-
sented with extensive clusters of apparent aneurysms
along the arteries and arterioles (Figure 6c) as well as ar-
terial blebbing that may represent weakened areas of the
vessel wall (Figure 6d). We next scored the aneurysm
pathology on a four-point scale (0 = none; 1 = 1 possible;
2 = 1–3 definite; 3 = 4+ definite) and found that aneu-
rysms were significantly more numerous in mice with
the AD genotype (AD and db/AD mice 1.7 ± 0.23 vs.
WT and db mice 0.45 ± 0.24: F[1, 15] = 14.14, p < 0.002
for the AD genotype overall; N = 4-5 F/ genotype: not
shown). The presence of the diabetes genotype did not
significantly increase the number of aneurysms (p < 0.2
for the db genotype overall).
Because aneurysms are unstable and prone to rupture,

we next looked for evidence of hemorrhage in the AD
and db/AD mice using Prussian blue staining for hemo-
siderin. Prussian blue staining showed a significant inci-
dence of microhemorrhages in older db/AD mice (n = 7;
χ2 = 4.75, p < 0.03); we did not find microhemorrhages
in genotypes other than the db/AD (n = 9: Figure 6e-f ),
including AD mice, which also displayed significant
aneurysm pathology.
We scanned a separate cohort of older mice using small

animal magnetic resonance imaging (MRI) in order to
visualize areas of hemorrhage and infarcts. Indeed, the
majority of the db/AD mice tested (11/15) showed evi-
dence of multiple vascular events by MRI (Figure 7a-b,
h-j). Histological staining of brains from the scanned mice
was negative for Prussian blue staining (indicating the lack
of hemorrhage). Moreover, micrographs from the same
neuroanatomical level as the largest event detected by
MRI showed obvious necrosis in the surrounding tissue
and an obvious lack of Prussian blue positive staining
(Figure 7c-d). The histological data suggest that the vascu-
lar events are likely ischemic strokes. By contrast, no WT
(0/9: Figure 7e) or db (0/10: Figure 7f) and only a small
number of AD (2/9: Figure 7g) mice presented with
strokes, suggesting that the presence of both the db and
AD genotypes is required to promote these events (χ2 =
21.769; p ≤ 0.0001). In addition, there were multiple events
present in the db/AD mice (Figure 7h-j), whereas only one
or two were present in the AD mice positive for strokes.



Figure 6 Cerebrovascular pathology in db/AD mice. SEM images of vascular casts from brains of 4 mice (a-d). (a) Relatively normal appearing
cerebrovasculature of a WT mouse (large vessel is a small artery; note the clear endothelial cell nuclear imprints and their elongated shapes).
(b) Aneurysm (arrow) in the brain of an AD mouse near a large vein. Some of the AD mice exhibited more severe cerebrovascular pathology,
possibly representing clusters of saccular aneurysms (c) or arterial blebbing (d). In comparison, WT and db mice had minimal pathology at this
age. (e - f) Prussian blue (with neutral red counterstain) staining showing microhemorrhages in two different cortical areas in older db/AD mice.

Niedowicz et al. Acta Neuropathologica Communications 2014, 2:64 Page 11 of 17
http://www.actaneurocomms.org/content/2/1/64
Passive immunization
Our data suggest that the intersection of the db and AD
genotypes is necessary to induce strokes in these mice.
In light of this data and the absence of diabetes-induced
amyloid accumulation, we believe that the stroke path-
ology is unlikely to be due to Aβ accumulation. In order



Figure 7 Stroke pathology in db/AD mice. Sequential (a posterior to b) T2*-MRI coronal images from an older db/AD mouse showing a
neocortical event (arrow) near the corpus callosum; images are separated by ~300 μm. (c - d) The brain was sectioned transversely to obtain
confirmation of stroke extent. Prussian blue staining with neutral red counterstain showed no evidence of hemorrhage, indicating an ischemic
stroke event. P – A: posterior / anterior, for orientation (N.B.: section is perpendicular to scanning axis). (e- j) ~70% of db/AD mice (n = 11/15) had
strokes (arrowheads); these were rare in AD mice (g: n = 2/9), and not found at all in WT (e: n = 9) or db mice (f: n = 10). All mice imaged were
12–14 months old. The db/AD mice (h - j) often have multiple incidents as opposed to the two AD mice, which only displayed one or two small
strokes. Representative cases are shown (all scans are at about the same neuroanatomical level).
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to test this hypothesis, we next performed a pilot study
in which we immunized older db/AD mice with an Aβ
antibody (Ab42.5) for two months. Parenchymal Aβ was
significantly reduced via immunization compared to age-
matched, untreated db/AD mice (~17% decrease; n = 6 /
group; p < 0.006: not shown). Though Aβ was signifi-
cantly reduced in the brain, there was no evidence that
the stroke phenotype was rescued. Most of the treated
mice imaged by MRI showed evidence of stroke (4/6
treated vs. 11/15 untreated; p < 0.67: not shown).

Vascular density
γ-Secretase has been implicated in the regulation of
VEGF-dependent angiogenesis [30-32]. Since we observed
an upregulation of PS1 expression in the db/AD mice in
the absence of Aβ accumulation, we hypothesized that
PS1 might contribute to the observed vascular pathology
through the regulation of angiogenesis. We therefore mea-
sured the amount of blood vessels present in the brains of
older db/AD mice. Staining for smooth muscle α-actin in-
dicated that the brains of db/AD mice were significantly
more vascularized than those of WT mice (1.35 ± 0.52 vs.
0.31 ± 0.52: n = 4/ genotype: p < 0.04: Figure 8a-b). SEM
images showed a similar increase in the density of the cer-
ebrovasculature in the brains subjected to vascular corro-
sion casting (Figure 8c-d). Indeed, median vascular
density scores of the SEM images from three blinded, in-
dependent raters indicated that the db genotype signifi-
cantly increased vascular density (Figure 8e: N = 19: p <
0.02, Mann–Whitney U-test). The AD genotype had a
marginal effect, (p ≤ 0.05). Similarly, db/AD mice had a
greater number of endothelial cells than the other geno-
types (p ≤ 0.05; Kruskal-Wallis ANOVA), as measured by
the endothelial cell nuclear imprints. Endothelial cell
density was correlated with vascular density (Figure 8f:
p < 0.03). Direct measurement of cell size (68 ± 27 cells /
animal) from the middle cerebral artery indicated that
endothelial cells were smaller in diabetic mice (F[3, 8] =
17.9, p < 0.01), and size was inversely correlated with dens-
ity (R2 = 0.41, p < 0.02). Collectively, these data indicate
that db/AD mice had an increase in the number of cere-
bral blood vessels, supportive of increased angiogenesis or
arteriogenesis.

Discussion
The db/AD model
We have created a unique mouse model that encapsulates
features of both T2DM and AD- the db/AD mouse. These
mice are morbidly obese and glucose intolerant at a young
age (Figure 1a-d), and have a profound cognitive impair-
ment by 12 months (Figure 4). The db/AD mice display
decreased survival (Figure 1e-f), the cause of which is cur-
rently unknown. Male db/ADmice appear to be more sus-
ceptible to premature death, though sexual dimorphism
has been noted in many AD models [33-35]. While their
lifespan is shortened relative to control genotypes, we
were able to routinely age the db/AD mice beyond
12 months, allowing significant Aβ accumulation, plaque
formation, stroke pathology, and cognitive impairment.
Contrary to our expectations, the db/AD mice did not

exhibit increased parenchymal Aβ accumulation com-
pared with the normoglycemic AD mice (Figure 2h-k),
in spite of the observed increase in PS1 expression
(Figure 2e). Aβ oligomers were modestly elevated in
both db and db/AD mice (Figure 2g), though the po-
tential impact of this increase is unknown at this point.
It is possible that the detected oligomers are formed
from murine Aβ and, thus, are not toxic. The reason
for the relative dearth of excess Aβ in db/AD mice is
unclear, though it does not appear to be due to stimu-
lation of clearance mechanisms. While we cannot rule
out clearance by other enzymes, the major enzyme ac-
tivities that proteolyze Aβ (neprilysin, IDE, and ECE)
were not increased in db/AD mice (Figure 3d-g), nor
was there an increase in peripheral Aβ in the plasma
(Figure 3b-c). In addition, we found no evidence that
Aβ is deposited in the vasculature (Figure 3a), despite
using multiple different staining techniques. Based on
this data, it is likely that excess Aβ is simply not made
in db/AD mice. In addition, there is no evidence of a
significant reduction in the number of synapses in
older db/AD mice (Figure 5). These findings indicate
that neither CAA nor synaptic loss causes the cognitive
decline observed in our mouse model.
The most striking feature of this mouse model is the

severe vascular abnormalities that are present, appar-
ently in the absence of a corresponding increase in Aβ
deposition. Older AD and db/AD mice exhibited pro-
found aneurysm pathology (Figure 6b-d) and db/AD
mice had small strokes (Figure 7). Though we did ob-
serve a few areas of hemosiderin-positive staining in
those animals with the largest number of vascular
events (Figure 6e-f ), we did not see substantial num-
bers of hemorrhages in the db/AD animals. Indeed, it is
possible that the more extensive pathologies observed
by SEM are representative of ischemic stroke, but take
on this appearance during the vascular corrosion cast-
ing process. In addition, the largest event observed by
MRI (Figure 7a-b) did not stain positive for hemosid-
erin (Figure 7c-d) and was likely ischemic in nature.
We feel that infarction is the likely cause of these
events, but further characterization will be needed. This
is broadly consistent with the type of cerebrovascular
disease observed in human diabetics [36,37]. Given that
the db/AD mice were the only genotype to exhibit both
stroke pathology and cognitive impairment, we believe
that it is these strokes that are responsible for the ob-
served cognitive decline.



Figure 8 Vascular and endothelial density increase in db/AD mice. (a - b) Immunohistochemical staining for smooth muscle α-actin indicates
that the brains of db/AD mice are more vascularized. (c - d) SEM images of the brains subjected to vascular corrosion casting show a similar
increase in the density of the cerebrovasculature. (e) Median vascular density scores of SEM images from three blinded, independent raters
(* = p≤ 0.05, ** = p≤ 0.01 compared to WT, Mann–Whitney U-test). Endothelial cells were also directly counted on five randomly-selected arteries
/ animal (* = p≤ 0.05 compared to WT; Kruskal-Wallis ANOVA). Direct measurement of cell size (68 ± 27 cells / animal) from the middle cerebral
artery indicated that db/AD endothelial cells were smaller (F[3,8] = 7.8, p < 0.01) than those from WT mice, and as expected size was inversely
correlated with density (R2 = 0.41, p < 0.02; not shown). (f) Endothelial cell density was also correlated with vascular density (p = 0.03).
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Mechanism of vascular pathology
Based on our data, it is likely that the aneurysm and
stroke pathologies are separable events. Aneurysms were
prevalent in AD animals, regardless of diabetic pheno-
type and were not exacerbated by diabetes. This suggests
that the aneurysms may be caused by some feature of
the AD genotype. While aneurysms are not typically as-
sociated with AD in humans, increased blood vessel tor-
tuosity, which is associated with aneurysms in other
diseases, has been observed [38,39]. In addition, muta-
tions in the presenilin substrate Notch are associated
with thoracic aneurysms, likely through crosstalk with
TGFβ signaling [40,41]. The mutation in PS1 present in
the AD mice may also affect this Notch signaling path-
way, resulting in the aneurysm pathology.
On the other hand, the intersection of the db and AD

genotypes was necessary to induce strokes in these mice
(Figure 7). In light of this data and the absence of
diabetes-induced amyloid accumulation, we believe that
the stroke pathology is unlikely to be due to Aβ accumu-
lation. This hypothesis was supported by preliminary
data from our passive immunization study, which
showed that stroke incidence was not reduced in db/AD
mice treated with an anti-Aβ antibody, though brain Aβ
levels did decrease. While interesting, a more extensive
study will be needed for a more definitive conclusion.
Diabetes itself has profound effects on the vasculature.

Obesity and diabetes are associated with hypertension and
atherosclerosis [42]. In addition, diabetic rodents, including
db/db mice, have increased neovascularization such as
angiogenesis and arteriogenesis [43-45]. This neovasculari-
zation consists of immature, unstable blood vessels that dis-
play increased permeability of the blood–brain barrier.
Similar pathologic angiogenesis occurs in diabetic retinop-
athy and is thought to involve presenilin and γ-secretase
regulation of VEGF signaling [30,46]. We have evidence
that PS1 expression increased in diabetic mice (Figure 2e)
regardless of the AD mutations present- as expected with
the use of “knocked-in” genes under endogenous pro-
moters. Consistent with PS1 upregulation, the db/AD mice
have a significantly higher density of blood vessels in the
brain than any of the other genotypes tested (Figure 8). Fur-
ther studies will be needed to determine if neovasculariza-
tion may indeed play a role in the strokes and/or cognitive
impairment, or if some other diabetes-related phenomenon
underlies these pathologies. We have shown previously that
leptin downregulates PS1 expression in both in vitro and
in vivo models [28]. It will be interesting to determine if
leptin resistance in the db/AD mice contributes to neovas-
cularization via regulation of the γ-secretase complex.

A unique model of mixed dementia
The form of dementia afflicting diabetic individuals
combines elements of vascular pathology, small strokes
and AD-related neuropathology. In fact, the amount of
AD pathology is essentially unchanged in cases with a
history of T2DM, while cerebrovascular pathology in-
creases [9,10]. The db/AD mice share these features. One
way of looking at this seemingly paradoxical observation
is that cerebrovascular pathology lowers the threshold for
incipient AD pathology to become unmasked as a clinical
dementia as has been suggested elsewhere [10].
A small number of studies have examined the linkage

between obesity, diabetes and dementia in rodent models
[47,48]. The majority of these are focused on two para-
digms: treatment with streptozotocin (STZ) and feeding a
high fat, or typical Western, diet (TWD). STZ, a pancre-
atic islet toxin, is primarily used to model type I diabetes;
thus it does not address the issue of obesity. Although
TWD feeding induces obesity, and has some short-term
effects on AD-related neuropathology in these models
[49-51], these studies have failed to provide any detailed
mechanistic insights into how obesity might influence the
development of age-related neurologic disease. Further,
TWD feeding does not have strong long-term effects on
AD and vascular dementia-related neuropathology [52].
Studies utilizing genetic models of diabetes have been
more limited. When Tg2576 mice, which overexpress
APPΔNL, are crossed with Irs2−/− insulin resistant mice,
the resulting animals show reduced amyloid pathology
[53]. In addition, a recent study examined the outcome of
a cross between leptin-resistant ob/ob mice and APP23
mice [54]. These animals showed a very early Morris
Water Maze deficit (2–3 months old) unrelated to amyl-
oid load, as the animals had no plaques and no differences
in Aβ levels compared with non-diabetic controls. Even at
the oldest age examined (12 months old), plaque path-
ology in these mice was virtually nonexistent, although
there was some vascular amyloid in a very small number
of animals (n = 3). The choice of parental mouse lines
has a profound effect on the viability of the resulting
mice as well: a cross between the ob/ob and Tg2576
lines yielded animals with significantly reduced viability
[55]. While our data are in broadly supportive of these
other studies, the db/AD mice are unique in that they
have Aβ plaques, very little vascular-associated Aβ, and
profound underlying vascular abnormalities, even in
the absence of a high-fat diet.
In summary, the db/AD mouse is a unique model of

mixed dementia, possessing both AD-related and vascu-
lar pathologies. Older mice present with extensive stroke
pathology, arising from a combination of the diabetic
and AD phenotypes, thus leading to significant cognitive
impairment. While these data suggest that Aβ is not a
primary factor in the observed cognitive impairment, we
cannot exclude the possibility that a soluble form of
Aβ, such as oligomers, may play a role in the cognitive
decline. Future studies will focus on the mechanisms
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behind the vascular abnormalities, at both the cellular
and tissue levels. Finally, the db/AD mouse is a novel
model in which to test possible therapeutic and pre-
ventative strategies to treat cognitive decline from
mixed dementia.
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